E-commerce websites for developing countries – A usability evaluation framework

E-commerce websites for developing countries – A usability evaluation framework

Article  in  Online Information Review · April 2013

DOI: 10.1108/OIR-10-2011-0166

CITATIONS

19

READS

235

3 authors:

Some of the authors of this publication are also working on these related projects:

Usability of e-learning systems: the case of Moodle View project

Usability of Educational Websites View project

Layla Hasan

Zarqa University

32 PUBLICATIONS   318 CITATIONS

SEE PROFILE

Anne Morris

Loughborough University

87 PUBLICATIONS   1,676 CITATIONS

SEE PROFILE

Steve Probets

Loughborough University

38 PUBLICATIONS   567 CITATIONS

SEE PROFILE

All content following this page was uploaded by Layla Hasan on 10 October 2015.

The user has requested enhancement of the downloaded file.

Loughborough University Institutional Repository

E-commerce websites for developing countries � a

usability evaluation framework

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: HASAN, L., MORRIS, A. and PROBETS, S., 2013. E-commerce websites for developing countries � a usability evaluation framework. Online Information Review, 37 (2), pp. 231 – 251.

Additional Information:

• This article was published in the journal, Online Information Review [ c© Emerald Group Publishing Limited] and the de�nitive version is available at: http://dx.doi.org/10.1108/OIR-10-2011-0166

Metadata Record: https://dspace.lboro.ac.uk/2134/12422

Version: Accepted for publication

Publisher: c© Emerald Group Publishing Limited

Please cite the published version.

This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/

1

E-Commerce Websites for Developing Countries – A Usability

Evaluation Framework

Abstract Purpose: The purpose of this research was to develop a methodological usability evaluation framework for e-commerce websites. Design/methodology/approach: A multiple-case study (comparative design) was used, where three usability methods (user testing, heuristic evaluation and web analytics) were applied to three Jordanian e-commerce companies. The resulting framework took into account the advantages and disadvantages of the methods in identifying specific usability problems on the e-commerce websites. Findings: A four-step framework was developed to facilitate the evaluation of e- commerce sites. Research limitations: The framework was developed and tested using Jordanian users, experts and e-commerce sites. The study compared the ability of the methods to detect problems that were present, however, usability issues not present on any of the sites could not be considered when creating the framework. Practical implications: The framework helps e-commerce retailers evaluate the usability of their websites and understand which usability method(s) best matches their need. Originality/value: This research proposes a new approach for evaluating the usability of websites, specifically e-commerce sites. A particularly novel approach is the use of web analytics (Google Analytics software) as a component in the usability evaluation in conjunction with heuristics and user testing. Keywords: framework, e-commerce websites, developing countries, user testing, heuristic evaluation, Google Analytics. Paper Type: Research Paper.

2

1. Introduction To be successful, websites need to have good usability. Usability is a measure of how

easy the interface is to use (Najjar, 2005; Nielsen, 2003). Nielsen (2003), for example,

stated that the first law of e-commerce is that, if users are unable to find a product,

they cannot buy it. Consequently, unusable websites will lead shoppers to abandon

them, resulting in a loss of sales (McKinney et al., 2002).

A variety of usability evaluation methods have been developed which could be

employed to identify usability problems of e-commerce websites. These methods can

be categorised in terms of how the usability problems are identified: for example by

users, evaluators or tools.

User-based usability evaluation methods usually involve users being observed

undertaking pre-defined tasks with the purpose of identifying usability problems

(Brinck et al., 2001). User-based approaches have been frequently used to evaluate

the usability of e-commerce websites (Agarwal and Venkatesh, 2002; McKinney et

al., 2002). For example, McKinney et al. (2002) developed constructs and

corresponding measurement scales with users for measuring web customer

satisfaction and Tilson et al. (1998) asked sixteen users to complete tasks on four e-e-

commerce sites and report what they liked and disliked. Freeman and Hyland (2003)

also used a similar technique to evaluate and compare the usability of e-commerce

sites. Research outcomes proved the usefulness of user-based methods in identifying

major design problems which prevented users from interacting with the sites

successfully.

Evaluator-based usability evaluation methods involve having a number of

expert evaluators assess the user interface to judge whether it conforms to a set of

usability principles (namely ‘heuristics’) (Nielsen and Mack, 1994). Agarwal and

Venkatesh (2002) described a heuristic evaluation procedure for assessing a firm’s

website usability. In terms of e-commerce sites, Chen and Macredie (2005), for

example, used expert evaluator methods to evaluate the usability of four online

supermarkets. Again, research outcomes proved this method successful in identifying

both usability problems and good design features on the sites.

Several studies have compared both user testing and heuristic evaluation methods.

Barnard and Wesson (2004), for example, used both methods to investigate design

issues and problems that were of high significance for e-commerce sites in South

Africa from the perspective of both experts and users. Problems identified by both

3

users and experts were considered to be significant while those that were missed or

uniquely identified by only one of those methods were ignored. Other comparative

studies have shown that heuristic evaluation methods uniquely identify more usability

problems than usability testing (Desurvire et al., 1991; Doubleday et al., 1997; Fu et

al., 2002). Although these studies did not explain the distribution of usability

problems identified by the methods in terms of whether they were major or minor

problems, other studies have discussed this issue and offer various findings (Jeffries et

al., 1991; Law and Hvannberg, 2002). Jeffries et al. (1991), for example, found that

heuristic evaluation identified a larger number of both serious and minor problems in

comparison to user testing. However, Gray and Salzman (1998) criticised the design

of this study because the number of participants was too small for statistical analysis.

By contrast, Law and Hvannberg (2002), found that while heuristic evaluation found a

larger number of minor problems compared to user testing, the latter was better at

uniquely identifying major problems.

Only a few studies, however, highlighted the types of specific usability problems

identified by user testing and heuristic evaluation methods. One such study by

Mariage and Vanderdonckt (2000) evaluated an electronic newspaper. They identified

examples of usability problems that were identified by user testing and missed by

heuristic evaluation (i.e. inappropriate choice of font size), and examples of problems

that were identified by heuristic evaluation and confirmed by user testing (i.e. a home

page layout that was regarded as being too long).

Tan et al. (2009), who compared user testing and heuristic evaluation by

evaluating four commercial websites, also classified usability problems by their types.

Both methods were found to be equally effective in identifying different usability

problems related to five categories (navigation, information content, layout

organisation and structure, usability and availability of tools, and common look and

feel) but user testing did not identify problems relating to two issues (compatibility,

and security and privacy issues).

Software-based usability evaluation methods use software tools to identify

usability problems. Web analytics is an example of this approach and involves

collecting, measuring, monitoring, analysing and reporting web usage data to

understand visitors’ experiences (Web Analytics Association, [n.d.]). There are two

common approaches to web analytics. These are server-based log file analysis and

client-based page-tagging (JavaScript tagging). Analysis of server-based log files was

4

the first approach used for web analytics. It involves the use of a server’s log file to

collect access and visit data. Kaushik (2007) indicated that while the log file

technique was used widely as a data source for web analytics, the disadvantages of

using this approach (i.e. the use of caching techniques, and the use of IP addresses to

identify unique visitors) were noticed by both web analytics vendors and customers.

These challenges led to the emergence of page-tagging techniques as a new source

for collecting data from websites. Page-tagging involves adding lines of script

(JavaScript code) to the pages of a website to gather statistics from them. Page-

tagging is typically more accurate than using web server log-files. Reasons for the

improved accuracy of this method are that most page tags are based on cookies to

determine the uniqueness of a visitor and not on the IP address, and this method is not

influenced by caching techniques (Kaushik, 2007; Peterson, 2004). An example of a

web analytic tool that uses the page-tagging approach, and which has had a major

effect on the web analytics’ industry, is Google Analytics (GA).

Web metrics give meaning to data collected by web analytics tools and can be

placed into two categories: basic and advanced. Basic metrics are raw data which are

usually expressed in raw numbers (i.e. visits, page views etc.). Advanced metrics are

metrics which are expressed in ratios or percentages instead of raw numbers and are

designed to simplify the presentation of web data, and to guide actions that optimise

online business (Peterson, 2006). An example of one such metric is bounce rate,

which represents the percentage of single page visits: i.e. visits where users left the

site after visiting only one page (Peterson, 2006). The use of basic metrics to measure

the traffic of websites has been criticised for several reasons, one of which relates to

their simplicity in addressing only some aspects of web measurement (Inan, 2006;

Phippen et al., 2004).

Most of the earlier studies that used web analytics to evaluate and improve the

design and functionality of websites used log-file based web analytics and employed

basic metrics included in the reports generated by the web log analyser (Jana and

Chatterjee, 2004; Ong et al., 2003; Peacock, 2003; Xue, 2004; Yeadon, 2001).

However, at least two studies have recognised the appearance of GA software, which

uses the page-tagging approach, and have used this tool to evaluate and improve the

design and content of websites (Fang, 2007; Prom, 2007). Both used the standard

reports from GA (i.e. funnel navigation) without deriving specific metrics. These two

studies suggested that the GA tool could be useful since GA’s reports enable

5

problems to be identified quickly and help determine whether a site provides the

necessary information to its visitors.

Despite the literature outlined above, there has been little research evaluating the

usability of e-commerce websites employing user-based, evaluator-based and

software-based (GA) usability evaluation methods together. Studies by Fang (2007)

and Prom (2007) illustrated the potential usefulness of using GA to evaluate websites

with the intention of improving their usability. However, further research is needed to

explain how GA can be used to evaluate the usability of e-commerce websites by

employing advanced web metrics. Similarly, additional research is needed to

investigate and compare detailed types of specific usability problems that could be

identified uniquely by user testing, heuristic evaluation methods and GA, and those

problems that could be either missed or commonly identified by these methods when

evaluating an e-commerce website.

The research described here aims to address this gap and presents a framework

which involves user-, evaluator- and software-based methods. A combination of these

different methods is proposed in an attempt to reduce the time, effort and money

expended by e-commerce vendors when assessing the usability of their websites. It

is based on e-commerce websites in Jordan, which like other developing countries,

face additional challenges to those in the West in making their sites acceptable, usable

and profitable in the absence of legislation and regulations (Obeidat, 2001).

The aim of the research described here was, therefore, to develop a methodological

framework to investigate the usability of e-commerce websites in Jordan. The specific

objectives for the research were:

• To use three different approaches (user testing, heuristic evaluation and a leading

web analytics package (Google Analytics) to evaluate the usability of a selection of

e-commerce websites by identifying the main usability problem areas on the sites

from three different perspectives: evaluators, users and software tools.

• To determine which of these approaches were the most effective in evaluating

each usability problem area.

• To create a framework to identify how to evaluate e-commerce sites in relation to

specific areas.

The remaining sections of this paper describe the methods used, present the main

results, illustrate the framework and finally, present the conclusions.

6

2. Methodology

2.1 Selection of usability evaluation methodologies

The selection of the three usability evaluation methods (user testing, heuristic

evaluation and GA) was based on evidence that showed the methods complement

each other in as much as they are able to identify usability problems from different

perspectives (Desurvire et al., 1992; Fu et al., 2002; Jeffries et al., 1991; Kaushik,

2007; Law and Hvannberg, 2002; Nielsen, 2003; Peterson, 2004). Several researchers

have suggested the need to use both heuristic and user testing in tandem in order to

identify different kinds of usability problems (Desurvire et al., 1991; Fu et al., 2002;

Jeffries et al., 1991; Law and Hvannberg, 2002; Nielsen, 2003). Regarding the use of

the Google Analytics approach, other researchers have stressed the importance of

employing other methods, such as usability methods, alongside the web analytics

approach (Kaushik, 2007; Peterson, 2004). Web analytics packages monitor users’

behaviour over a long time period relative to user testing and identify issues, often

missed by user testing, that could help in identifying additional usability problems.

2.2 Case studies

The research was based on a multiple-case study (comparative design) where the three

methods (user testing, heuristic evaluation and GA) were applied to three Jordanian e-

commerce companies in order to develop the framework. To make the identification

of usability faults as efficient and effective as possible it was necessary to ascertain

the order of deploying the methods as well as determining which methods should be

used for what purposes. Initially, twenty seven e-commerce companies in Jordan were

identified from five electronic Jordanian and Arab directories and a Google search.

These companies were contacted and three of them agreed to participate. Two of them

sold women’s clothes and the third sold hand-crafted gifts to both national and

international customers. This study focused on investigating the usability of these

websites from the point view of national (Jordanian) customers. The three methods

were employed concurrently at each site to ensure that the results were not affected by

any website changes made by that particular e-commerce vendor.

Initially, the required GA script was inserted on the companies’ web sites to enable

GA software to track the usage of the e-commerce sites. The usage of the websites

was then monitored for three months.

7

In order to employ the user testing method, a task scenario was developed for each

of the three websites. This involved specifying typical tasks for e-commerce websites,

such as finding information and products, using the site’s search engine, purchasing

products, changing the content of the shopping cart, and changing the user profile.

Each company was asked to explain the characteristics of their current and proposed

user base and then twenty users were recruited with characteristics that matched those

specified by the companies. Data were gathered from each user testing session using

screen capture software (Camtasia), with three post-test questionnaires (one post-test

questionnaire was given to each user after completing the tasks for each site to get

user feedback). Observation of the users working through the tasks, in addition to

taking comments from the users while interacting with each site, was also undertaken.

In addition, a set of comprehensive heuristics, specific to e-commerce websites,

was devised based on a detailed review of the HCI literature. Specifically, the

developed heuristics were based on: general texts on how to design usable websites

(Nielsen, 2000; Sharp et al., 2007; Pearrow, 2000; Brinck et al., 2001); design criteria

developed for evaluating e-commerce websites (Elliott et al., 2000; Davidson and

Lambert, 2005; Oppenheim and Ward, 2006; Van der Merwe and Bekker, 2003;

Hung and McQueen, 2004); research investigating the relative importance of e-

commerce web design issues and features that affect purchasing habits (Barnard and

Wesson, 2004; Claudio and Antonio, [n.d.]; Chen and Macredie, 2005; Freeman and

Hyland, 2003; Oppenheim and Ward, 2006; Pearson et al., 2007; Tarafdar and Zhang,

2005; Tilson et al., 1998; White and Manning, 1998). The heuristics used in the

research were organised into five major categories: architecture and navigation,

content, accessibility and customer service, design, and the purchasing process. Five

web experts, who had extensive design experience in e-commerce websites (more

than ten years), evaluated the sites using the heuristic guidelines. This number was

considered appropriate given that Nielsen and Mack (1994) and Pickard (2007) both

recommend using between three to five evaluators. The heuristic evaluators were

asked to indicate whether they felt any usability problems were likely to be minor or

major. To ensure inter-rater reliability (i.e. the extent of agreement between the

heuristic evaluators) Kappa statistics were calculated. Overall, the Kappa statistic for

all the usability problems identified by the evaluators was 0.69, which, according to

Altman (1991), indicates *good* agreement among the evaluators.

8

After all three methods had been deployed the data were analysed in three stages to

determine which methods identified each usability problem area. The first stage

involved analysing each usability method separately for each case and identifying the

usability problems obtained from each method. The user testing method was analysed

by examining: performance data; in-session observation notes; notes taken from

reviewing the Camtasia sessions; users’ comments noted during the test; and

quantitative and qualitative data from the post-test questionnaires. The heuristic

evaluation method was analysed by examining the heuristic evaluators’ comments

obtained during the fifteen sessions. The web usage of the three sites, tracked using

GA, was measured using a trial matrix of 41 advanced web metrics divided into nine

categories (Table 1).

The second stage of the analysis aimed to identify a list of common usability

problems pinpointed by each method. This was achieved by performing a comparison

of each usability evaluation method across the three cases. The third stage of the

analysis was undertaken in order to generate a list of standardised usability problem

themes and sub-themes to facilitate comparison among the methods. Problem themes

and sub-themes were identified from the common usability problem areas which were

generated by each method. Ten problem themes (usability problem areas) and 44

problem sub-themes (usability problem sub-areas) were finally identified from an

analysis of the methods and the ability of each method to accurately identify each

problem sub-theme was recorded (see Appendix).

9

Table 1: Trial matrix of web metrics No. Metrics Category Metrics 1 General usability metrics Average time on site, average page views per visit, percentage of

long, medium and short time spent visits, percentage of high, medium and low click depth (page view) visits, bounce rate

2 Internal search metrics Average searches per visit, percent visits using search, search results to site exits ratio

3 Top landing pages metrics

Bounce rate, entrance sources, entrance keywords

4 Top content pages (most viewed pages) metrics

Bounce rate, average time, percentage of site exits

5 Top exit pages metrics Percentage of site exits 6 Finding customer support

information metrics Information find conversion rate 0F1, feedback form conversion rate.

7 Purchasing process metrics

Cart start rate 1F2, cart completion rate, checkout start rate 2F3, checkout completion rate, ratio of checkout starts to cart starts, funnel report3F4.

8 Visitors’ metrics Ratio of new to returning visits, visitor engagement index4F5, percentage of high, medium and low frequency visits, percentage of high, medium and low recency visits, language, operating systems, browsers, screen colours, screen resolutions, flash versions, Java support, connection speed.

9 Financial performance metrics

Average order value, order conversion rate, average revenue per visit, average visits to purchase, average days to purchase, average items per cart completed.

3. Results

3.1 Google Analytics results

The results obtained from the trial matrix of 41web metrics shown in Table 1 were

investigated. The metrics could either be used individually, or in combination, to

identify potential usability problems on an e-commerce website in relation to six

areas: navigation, architecture, content/design, internal search, customer service, and

the purchasing process. Figure 1 shows the suggested matrix and the combination of

metrics that were found useful in each area. The matrix also includes specific metrics

which were useful in indicating specific web pages such as top landing pages, top

content pages, top exit pages and those in the purchasing process that had potential

usability problems in their content or design.

1 Information find conversion rate: Percentage of visits where visitors viewed customer support pages [34]. 2 Cart start rate metric: Percentage of visits that involve visitors adding at least one item to their shopping cart [34]. 3 Checkout start rate metric: Percentage of visits that involve visitors who clicked the checkout button [34]. 4 Funnel report: This involves an analysis of the navigational paths followed by visitors based on a number of identified steps. 5 Visitor engagement index: The average sessions or visits per visitor [34].

10

Metrics to indicate overall

usability of a site

Navigation

Internal search

Architecture

Content/Design

Site’s visitors

Purchasing process

Customer service

Financial performance of a site

Average number of page views per visit

Bounce rate Percentage of

click depth visits

Average searches per

visit

Percent of visits using search

Percentage of visits using

search

Average search per visit

Average number of page views per visit

Percentage of click depth

visits

Search results to site exits

ratio

Average searches per

visit

Percentage of time spent

visits

Percent of visits using search

Percentage of click depth

visits

Average number of page views per visit

Top landing

pages

Top content

pages

Top exist pages

Percentage of click depth

visits

Percentage of time spent

visits Bounce rate

Entrance keywords

Entrance searches Bounce rate

Bounce rate Average time on page Percentage of

site exits

Percentage of site exits

Cart start rate Checkout start rate Funnel report Specific pages

Information find conversion

rate

Feedback form conversion rate

Order conversion rate

Percentage of time spent

visits

Cart completion rate

Checkout completion rate

Visitor engagement

index

Ratio of new to returning visits Language

Operating system Browser

Screen resolutionScreen colour Flash version Java support

Connection speed

Average order value

Average revenue per

visit

Average items per cart

Figure 1: The suggested web matrix

11

Figure 1 also includes specific web metrics which helped to provide supplementary

information about the site’s visitors and its financial performance which could not be

provided by the user testing and heuristic evaluation methods. These metrics

enhanced the evaluator’s understanding of the overall usability of a site.

To illustrate how the combination of metrics in Figure 1 provided potential

indications of usability problems in the overall purchasing process for the three sites,

as well as indications of potential problems with specific pages that make up the

purchasing process, two examples are provided below:

• The combination of order conversion rate, time spent on site, cart completion and

checkout rate metrics suggest that the three sites had usability problems in their

overall purchasing process. Specifically, the low values of the order conversion

rate metric of all sites indicated that few visits resulted in an order. The relatively

low values for the percentage of long visits suggests that few visitors were

engaged in purchasing activity on the three sites. The low cart completion rate and

checkout completion rate metrics also suggest that the three sites had usability

problems in their purchasing processes. These findings agreed with the user

testing and heuristic evaluation methods where the users and the heuristic

evaluators experienced problems with the purchasing process of all three sites.

• The low value of the cart start rate metric (which showed that few users added

anything to the shopping cart) suggests that sites 1 and 2 had usability problems

on their product pages. This was confirmed by the user testing and the heuristic

evaluation methods. On site 1, for example, the performance data and observation,

and the heuristic evaluation methods identified a navigation problem relating to

misleading links. The qualitative data from the satisfaction questionnaire, together

with the heuristic evaluation methods, also identified two content problems on

sites 1 and 2 on the product pages; namely inaccurate information and missing

product information.

The results, however, indicated some limitations of employing the metrics in the

evaluation of the usability of e-commerce websites. These related to the fact that the

web metrics indicated only a potential usability problem area which could relate to

one or more specific problem sub-areas or sub-themes in this area. They could not

provide in-depth detail about specific problems that might be present on a page. These

12

specific problem sub-themes were identified by the user testing and/or the heuristic

methods.

3.2 User testing and heuristic evaluation methods

The heuristic evaluation was more effective than user testing in terms of identifying a

larger proportion of problems (see Table 2), however, nearly all of these were rated by

the evaluators as “minor”. User testing found six more “major” problems than

heuristic evaluation. An example of a “major” problem was when a user made an

error and was unable to recover and complete the assigned task in the allotted time,

whereas an example of a “minor” problem was when a user recognized they had made

an error but then were able to recover from it.

Table 2: Distribution of usability problems uniquely identified by the two methods

Heuristic testing User testing

Minor 159 2

Major 13 19

Total 172 21

An analysis of the usability problems that were uniquely and commonly identified

by the two methods based on the number of usability problems related to the ten

problem themes is presented in Figure 2. It can be seen that the heuristic evaluation

method was more effective in identifying a large number of problems compared to

user testing with respect to all the problem themes, with the exception of one, the

purchasing process, where user testing identified a larger number of problems.

Further specific details regarding the major and minor problems identified in the

ten problem themes and 44 sub-themes are presented in the Appendix, highlighting

the effectiveness of the user testing and heuristic evaluation methods in the case

studies. The results show the number and severity level of each specific problem area

identified by the user testing and heuristic evaluation methods with regard to the ten

main usability problem areas and their corresponding subareas. The results also

illustrate which method(s) are useful for identifying minor and major problems, those

that might fail to identify specific types of problems, or those that will always fail to

identify specific types of problems.

13

0 5

10 15 20 25 30 35 40 45

Na vig

ati on

Int ern

al Se

arc h

Ar ch

ite ctu

re

Co nte

nt

De sig

n

Pu rch

as ing

Pr oc

es s

Se cu

rity &

Pr iva

cy

Ac ce

ss ibi

lity &

Cu sto

me r S

erv ice

Inc on

sis ten

cy

Mi ss

ing Fu

nc tio

ns

N um

be r

of P

ro bl

em s

User Testing

Heuristic Evaluation

Common

Figure 2: Distribution of usability problems identified by the two methods by number and types

of problem

For example, regarding the navigation theme, it can be seen that the user testing

method was more effective than the heuristic evaluation in uniquely identifying major

problems related to two specific areas: misleading links (i.e. links with names that did

not meet users’ expectations as the name of the link did not match the content of its

destination page) and links that were not obvious (i.e. links that were not situated in

obvious locations on the sites). However, the heuristic evaluation was more effective

than the user testing in uniquely identifying other major navigational problems (i.e.

pages without a navigation menu) and minor problems related to four areas:

misleading links, links that were not obvious, broken links and orphan pages (i.e.

pages that did not have any links). One example from the case studies that relates to

navigation problems was that on site 1, users did not expect the advanced search link

to only allow searching the site by colour and price (Figure 3). This link therefore

constitutes a problem as the link name (‘Advanced Search’) did not match the content

of the destination page (Figure 3). Users expected this page to have search boxes with

many options available to search the site. However, this page included only combo

boxes that allowed users to only search the site on limited criteria. It did not allow

14

users to search by keywords or within a specific category. The heuristic evaluators,

however, missed identifying this problem.

Figure 3: Advanced search link and advanced search page on Site 1

In addition to the different kinds of navigational issues that were identified by the

two methods, there were many examples across the other usability themes that

illustrated the different kinds of issues identified by these methods. These included:

• Internal search theme: Both heuristic evaluation and user testing identified similar

major problems relating to inaccurate results and similar minor problems relating

to limited search options, however heuristic evaluation identified additional minor

problems such as an inappropriate position of the link to the search facility.

• Architecture theme: Both methods identified a major problem with one of the sites

regarding overly complex categorization of the site’s products, however heuristic

evaluators identified more minor problems such as poorly ordered menu items.

• Content theme: The heuristic approach was generally more effective in identifying

both major and minor problems such as irrelevant content, inaccurate or missing

information and poor grammar.

• Design theme: User testing was more effective in identifying a major problem

relating to inappropriate design, but heuristic testing was generally better at

15

identifying minor problems such as the poor quality of images, broken images and

missing alternative text.

• Purchasing theme: User testing was more effective than heuristic evaluation in

identifying major problems such as missing information relating to the purchase

process (such as the content of the shopping cart) and missing indicators for

required fields; however heuristic testing uniquely identified other problems such

as difficulty with log-on procedures, overly long registration pages, and missing

confirmation information as a result of an action.

• Security theme: This is an area where heuristic evaluation performed better than

user testing; user testing did not identify any problems in this regard whereas the

heuristic evaluators identified an issue with one site relating to lack of

privacy/security statements and policies.

• Accessibility theme: Although user testing uniquely identified major problems

relating to difficulties in finding help information, heuristic testing seemed better at

identifying minor problems such as currency support, lack of feedback options and

ease of accessing the site via search engines.

• Inconsistency theme: The heuristic evaluation was more effective than user testing

in identifying a large number of inconsistencies such as inconsistent colour,

typefaces, terminology etc.

• Capability theme: The heuristic evaluation was more effective in identifying a

large number of minor problems such as lack of delivery options.

In summary, the appendix shows that although heuristic evaluation identified more

problems in total, many of these were minor problems. Both methods identified a

reasonable number of major problems, with 13 of these being uniquely identified by

heuristic evaluation and 19 being uniquely identified by user testing. It seems clear

that for a complete and thorough evaluation of an e-commerce website both of these

evaluation methods need to be considered.

16

3.3 Costs of employing the three methods

The cost of employing the three methods (heuristic evaluation, user testing and the

GA tool) was estimated in terms of the time spent designing and analysing each of

these methods. The approximate time taken to design and analyse the heuristic

evaluation, user testing and GA methods was 247 hours, 326 hours and 360 hours

respectively (see Table 3). Identifying and combining suitable web metrics for use in

the study took a long time, 232 of the total 360 hours spent on GA. However, if these

were to be used again, then the time required for future GA tracking and data analysis

would be was considerably less (approximately 120 hours). Compared to other

research, the amount of time spent on heuristic evaluation in this research was

considerably more, possibly due to the fact more time was spent setting up and

designing the evaluation and analyzing the data. Additional time was also spent

recruiting the specialists, which proved difficult in a developing country.

Table 3: Cost of employing usability evaluation methods

Study Time Spent on User Testing

Time Spent on Heuristic Evaluation

Jeffries et al. (1999) 199 hours

Time spent on analysis. Six subjects participated.

35 hours

Time spent learning the method and becoming familiar with the interface under investigation (15 hours) and on analysis (20 hours). Four usability specialists conducted this method.

Law and Hvannberg (2002)

200 hours

Time spent on the design and application of this method. Ten subjects participated.

9 hours

Time spent on the design and conduction of this method by two evaluators

Doubleday et al. (1997)

125 hours

Time included 25 hours conducting 20 user sessions, 25 hours of evaluator support time, 75 hours of statistical analysis

33.5 hours

Time included 12.5 hours of evaluators’ time, 21 hours transcription of the experts’ comments and analysis

This Research 326 hours

Time included 136 hours setup and design, 20 hours collecting data from 20 user sessions, 170 hours analysis

247 hours

Time included 128 hours setup and designing, 15 hours collecting data from five web experts, 104 hours analysis

4. An evaluation framework

17

A framework for evaluating e-commerce websites was developed based on the results

and, in particular, a detailed analysis of the advantages and disadvantages of three

methods (user testing, heuristic evaluation and GA software), in terms of the specific

areas of usability problems that they could or could not identify on the test websites

(see Figure 4).

Figure 4: A framework to evaluate the usability of an e-commerce website

Specifically, the framework capitalises on the advantages of GA software by using

the recommended web metrics, (Figure 1), to identify the areas of an e-commerce site

that appear to have usability problems. Then, and because of the limitations of these

web metrics, the framework identifies specific areas of focus, enabling user testing

and/or heuristic evaluation to provide more precise details regarding the specific

usability problem areas on a site. The use of GA at an initial stage in the framework

enables evaluators to identify the specific usability areas that are most problematical;

emphasis can then be placed on investigating these specific areas which, in turn, may

reduce the time taken to undertake the user testing and heuristic evaluation

procedures. Table 4 provides a summary of the four steps of the suggested

framework.

Table 4: Summary of the steps of the suggested framework

18

Step Objective Task Expected Outcomes 1 To configure an e-

commerce website and GA software to make them ready so that GA software could track the usage of the website.

1. Identify the key business processes in an e-commerce website and the required pages users are expected to go through while completing the processes.

2. Configure GA software by adding the identified key business processes.

3. Insert GA code in the pages of the e-commerce site to be tracked by GA software.

GA software will start to collect data regarding the usage of the e-commerce website.

2 To identify general potential usability problem areas on an e- commerce website overall, and to highlight specific pages on the site that have potential usability problems.

1. Use the suggested matrix of web metrics (Figure 1) to measure the site’s usage.

2. Identify the metrics with values that may indicate problems (i.e. low value for average number of page views per visits).

3. Use Figure 1 to identify the problem areas on the site and/or on its specific pages. For example: If the site has low values for average number of page views per visits and percentage of high or medium click depth visits metrics together with high values for bounce rate, average searches per visits and percentage of visits using search metrics, then this indicates a navigational problem in the site.

• The identification of potential usability problem areas on a site overall.

• The identification of specific pages on the site that appear to have potential usability problems. These pages will include pages encountered by visitors while completing the identified key business processes (i.e. those identified in Step 1). Entry pages, most viewed pages and exit pages that have potential usability problems will also be identified.

• The description of the site’s visitors and its financial performance.

3 To identify the detailed

specific usability problems on the specific areas and pages on the e- commerce website (resulting from Step 2).

1. Use the Appendix, which summarises the effectiveness of user testing and heuristic evaluation methods with regard to their ability to identify specific problems on a site, to decide which method(s) to employ. For instance, if Step 2 suggests a navigational problem, then the evaluator should make a judgment on whether this may be related to misleading or broken links; if it is related to misleading links then the guidance indicates that this should be investigated by user testing but if it relates to broken links then this should be investigated by heuristic evaluation. If both misleading and broken links are indicated then the guidance suggests that these should be investigated

• The identification of specific usability problems on the site overall and on the specific pages on the site.

19

using both methods.

4 To redesign the e- commerce website and improve the usability problems identified in Step 3

1. For each usability problem identified in Step 3, suggest a recommendation on how to correct the problem.

2. Implement the suggested recommendations and re-design the website taking into consideration visitors’ characteristic identified in Step 2.

3. Move back to Step 2 to track and measure the usage of the re-designed website

• A new design of the e- commerce website with improved usability.

5. Conclusion

A framework was developed to evaluate the usability of e-commerce websites which

combines the use of GA software and the strategic use of user testing and heuristic

evaluation methods. It is based on the comparison of the benefits and drawbacks of

these methods in terms of the specific areas of usability problems that they could or

could not identify on these types of websites.

The framework involves GA software as a preliminary step to provide a quick,

easy and cheap indication of general potential usability problem areas on an e-

commerce website and its specific pages. Then the framework enables evaluators to

choose other method (s) to provide in-depth detail about specific problems on the site.

Using the methods strategically could help to reduce both time and evaluation costs.

The suggested framework has managerial and academic implications. Regarding

the managerial implication: E-commerce companies need to evaluate and improve

their e-commerce websites in a way that will improve their success. The suggested

framework is particularly useful for managers of e-commerce companies who might

be interested in identifying usability problems on their sites and improving the design

to meet users’ needs. The framework, which explicitly clarifies the effectiveness of

three usability evaluation methods, highlights the usefulness of the methods. It

therefore helps e-commerce retailers to determine the usability method that best

matches their need. It is expected that the framework will aid e-commerce companies

in taking appropriate decisions regarding which usability method to apply and how to

apply it in order to improve part or the overall usability of their websites, which could

help increase their profitability.

20

Regarding the academic implications: This paper presents an evaluation of three e-

commerce sites in Jordan as the basis for proposing a new approach for evaluating the

usability of websites, specifically e-commerce sites. A particularly novel approach is

the use of web analytics (Google Analytics software) as a component in the usability

evaluation in conjunction with heuristics and user testing. This research has provided

a detailed account of the use and evaluation of usability techniques for e-commence

and a reflective account of the merits of individual approaches.

A limitation of the framework is that it was developed and tested using Jordanian

users, experts and e-commerce sites. While it may have general applicability to e-

commerce sites in developed countries, it has yet to be tested. It could be, for

example, that users and/or heuristic evaluators in more developed countries would be

able to identify different types of problems based on their greater experience. The

suggested framework, therefore, has a particular value if applied to e-commerce sites

in developing countries like Jordan and was an attempt to confront the challenging

environment of e-commerce in such countries.

Despite the fact that multiple sites were used in determining the framework, and

previous literature and studies were used extensively to determine the heuristic

guidelines, user testing and web metrics, there is a potential second limitation of the

framework. This is related to the ability of the methods to detect major issues that

were not present on any of the three websites. The study compared the ability of the

methods to detect problems that were present. However, this study does not consider

usability issues not present on any of the examined sites. An extension of the study

would be to set up a website with a set of known usability issues and apply the three

methods.

The framework also offers a base for future research. Future research is needed to

evaluate the applicability and usefulness of the framework in e-commerce companies

in more developed countries. In particular, the extent to which the application of a

framework which uses the three methods strategically rather than individually is able

to reduce the time required to evaluate e-commerce websites should be investigated.

Further research is also necessary to ensure that the component parts of the

framework identify the expected specific usability problem areas when applied to

more sophisticated e-commerce websites.

References

21

1. Agarwal, R. and Venkatesh, V. (2002), “Assessing a Firm’s Web Presence: A Heuristic Evaluation Procedure for the Measurement of Usability”, Information Systems Research, 13 (2), pp. 168–186.

2. Altman, DG. (1991), Practical statistics for medical research. London: Chapman and Hall.

3. Barnard, L. and Wesson J. (2004), “A trust model for e-commerce in South Africa”, In the Proceedings of SAICSIT 2004, pp. 23-32.

4. Brinck, T. Gergle, D. and Wood S.D. (2001), Usability for the web: designing websites that work. Morgan Kaufmann Publishers.

5. Chen, S.Y. and Macredie, R.D. (2005), “An assessment of usability of electronic shopping: a heuristic evaluation”, International Journal of Information Management, 25, pp. 516-532.

6. Claudio O. & Antonio, J., “A model for evaluating B2C e-commerce websites: Application in the CD e-retailing industry in Brazil”. <http://www.oppapers.com/topics/website-evaluation/0>, [accessed 19.02.07].

7. Davidson R. & Lambert S. (2005),

“Australian winery B2C websites: are they

delivering the full bottle?”. Flinders University, School of commerce research paper series, South Australia.

8. Desurvire, H., Lawrence, D., and Atwood, M. (1991), “Empiricism versus judgment: comparing user interface evaluation methods on a new telephone-based interface”, SIGCHI Bulletin, 23 (4), pp. 58-59.

9. Doubleday, M. Ryan, M. Springett, A., and Sutcliffe (1997), “A comparison of usability techniques for evaluating design”, Proceedings of the 2nd conference on Designing interactive systems, Amsterdam, The Netherlands, pp.101 – 110.

10. Elliott, S., Morup-Peterson A. & Bjorn-Andersen N. (2000), “Towards a framework for evaluation of commercial websites”, 13th International Bled Electronic Commerce Conference, Bled, Slovenia, June 19-21.

11. Fang, W. (2007), “Using Google Analytics for improving library website content and design: A case study”, Journal of Library Philosophy and Practice, pp. 1-17.

12. Freeman, M.B. and Hyland, P. (2003), “Australian online supermarket usability”, Technical Report, Decision Systems Lab, University of Wollongong.

13. Fu, L., Salvendy, G. and Turley, L. (2002), “Effectiveness of user testing and heuristic evaluation as a function of performance classification”, Behaviour & Information Technology, 21(2), pp. 137-143.

14. Gray, W. and Salzman, C. (1998), “Damaged merchandise? a review of experiments that compare usability evaluation methods”, Human-Computer Interaction, 13, pp. 203-261.

15. Hung, W. & McQueen, R.J. (2004), “Developing an evaluation instrument for e- commerce websites from 1st buyer’s view point”, Electronic Journal of Information Systems Evaluation, 7(1), pp. 31-42.

16. Inan, H. (2006), Measuring the success of your website: a customer-centric approach to website management (Software Book), Hurol Inan.

17. Jana, S. and Chatterjee, S. (2004), “Quantifying website visits using web statistics: an extended cybermetrics study”, Online Information Review, 28(3), pp. 91-199.

18. Jeffries, R., Miller, J.R., Wharton, C., and Uyeda, K.M. (1991), “User interface evaluation in the real world: a comparison of four techniques”, Proceedings ACM CHI’91 Conference, New Orleans, LA, April 28-May 2, pp.119-124.

19. Kaushik (2007), Web analytics, an hour a day, Wiley Publishing, Inc. 20. Law, L. and Hvannberg, E. (2002), “Complementarity and convergence of

heuristic evaluation and usability test: a case study of Universal Brokerage

22

Platform”, ACM International Conference Proceeding Series, 3, Aarhus, Denmark, pp. 71-80.

21. Mariage, C. and Vanderdonckt, J. (2000), “A comparative usability study of electronic newspapers”, Proceedings of Int. Workshop on Tools for Working with Guidelines TFWWG’2000.

22. McKinney, V., Yoon, K., and Zahedi, F. (2002), “The Measurement of Web- Customer Satisfaction: An Expectation and Disconfirmation Approach”, Information Systems Research, 13(2), pp. 296-315.

23. Nielsen, J. (2003), “Usability 101: introduction to usability”, Useit.com. <useit.com/alertbox/20030825.html>

24. Nielsen, J. and Mack, R.L (1994), Usability inspection methods (Eds.), John Wiley & Sons, New York.

25. Nielsen, J. (2000), Designing web usability: the practice of simplicity. New Riders Publishing.

26. Nielsen, J. and Norman, D. (2000), “Web-Site usability: usability on the web isn’t a luxury”, Information Week, http://www.informationweek.com/773/web.htm

27. Obeidat, M. (2001), “Consumer protection and electronic commerce in Jordan (an exploratory study)”, In Proceedings of the Public Voice in Emerging Market Economies Conference, Dubai, UAE.

28. Oppenheim C. & Ward L. (2006), “Evaluation of websites for B2C e-commerce”, Aslib Proceedings: New Information Perspectives, 58(3).

29. Ong, K., Kingham, B., Sotiridy, K., Kaufman, D., Polkowski, M., Schofield, J. (2003), “Web presence of an integrated delivery system at year one: lessons learned”, International Journal of Medical Informatics, 70, pp. 1-18.

30. Peacock, D. (2003), “Statistics, structures & satisfied customers: using web log data to improve site performance”, in the Proceedings of Museums and the Web 2002, Boston.

31. Pearrow, M. (2000), Website usability handbook. Charles River Media. 32. Pearson, J. M., Pearson, A. & Green, D. (2007), “Determining the importance of

key criteria in web usability”, Management Research News. 30(11), pp. 816-828. 33. Peterson, E. (2004), Web analytics demystified, Celilo Group Media and

CafePress,. 34. Peterson, E.T. (2006), The big book of key performance indicators, First Edition, ,

<http://www.webanalyticsdemystified.com> 35. Phippen, L. Sheppard, S. Furnell (2004), “A practical evaluation of web

analytics”, Internet Research, 14(4), pp. 284-293. 36. Pickard, A. (2007), Research methods in information. Facet. London. 37. Prom (2007), “Understanding on-line archival use through web analytics”, ICA-

SUV Seminar, Dundee, Scotland,. http://www.library.uiuc.edu/archives/workpap/PromSUV2007.pdf

38. Sharp, H., Rogers, Y. & Preece, J. (2007), Interaction Design: Beyond Human- Computer Interaction. Wiley; Second Edition.

39. Tan, W., Liu, D., Bishu, R. (2009), “Web evaluation: heuristic evaluation vs. user testing”, International Journal of Industrial Ergonomics, 39, pp. 621-627.

40. Tarafdar, M. & Zhang, J. (2005), “Analyzing the Influence of Website Design Parameters on Website Usability”, Information Resources Management Journal. 18(4), pp. 62 – 80.

41. Tilson, R., Dong, J., Martin, S., Kieke, E. (1998), “Factors and principles affecting the usability of four e-commerce sites”, 4th Conference on Human Factors and the Web (CHFW), AT&TLabs, USA.

23

42. Van der Merwe, R. & Bekker, J. (2003), “A framework and methodology for evaluating e-commerce websites”, Internet Research: Electronic Networking Applications and Policy, 13(5), pp. 330-341.

43. Web Analytics Association, [n.d.]. http://www.webanalyticsassociation.org 44. Xue, S. (2004), “Web usage statistics and website evaluation”, Online Information

Review, 28(3), pp. 180-190. 45. White, G.K. & Manning B.J. (1998), “Commercial WWW site appeal: how does it

affect online food and drink consumers’ purchasing behaviour?”, Internet Research: Electronic Networking Application and Policy, 8(1), pp. 32-38.

46. Yeadon, J. (2001), “Website statistics”, Vine, 31(3), pp. 55-60.

24

Appendix: Summary of the Specific Problem Areas and Sub-areas Identified by the User Testing and Heuristic Evaluation Methods and their Severity Level

Usability Problem Area

Usability Problem Sub-Area

User Testing Heuristic Evaluation

Minor Problems

Major Problems

Minor Problems Major Problems

Navigation Problems

Misleading links √

(01)(12)

√√

(53)(04)

√√

(145)(16)

(07)(08)

Links were not obvious

(01)(02)

√√

(23)(24)

√√

(135)(06)

(17)(28)

Broken links √

(01)(32)

(03)(04)

√√

(35)(36)

(07)(08)

Weak navigation support

(01)(02)

(03)(14)

(05)(06)

√√

(27)(18)

Orphan pages √

(01)(12)

(03)(04)

√√

(75)(16)

(07)(08)

Internal Search Problems

Inaccurate results

(01)(02)

√√

(03)(24)

√√

(15)(06)

√√

(07)(28)

Limited options √√

(01)(22)

(03)(04)

√√

(05)(26)

(07)(08)

Poor visibility of search position

(01)(02)

(03)(04)

√√

(15)(06)

(07)(08)

Architecture Problems

Poor structure

(01)(02)

√√

(03)(14)

(05)(06)

√√

(07)(18)

Illogical order of menu items

(01)(02)

(03)(04)

√√

(25)(06)

(07)(08)

Illogical categorisation of menu items

(01)(02)

(03)(04)

√√

(15)(06)

(07)(08)

Content Problems

Irrelevant content √

(01)(42)

(03)(24)

√√

(165)(46)

√√

(17)(28)

Inaccurate information √√

(01)(22)

(03)(04)

√√

(05)(26)

√√

(17)(08)

Grammatical accuracy problems

(01)(02)

(03)(04)

√√

(25)(06)

(07)(08)

Missing information about the company

(01)(02)

(03)(04)

√√

(25)(06)

(07)(08)

Missing information about the products

(01)(32)

(03)(04)

√√

(105)(36)

(07)(08)

Design Problems

Misleading images √

(01)(12)

(03)(04)

√√

(55)(16)

(07)(08)

Inappropriate page design √

(01)(22)

√√

(23)(14)

√√

(95)(26)

(07)(18)

Unaesthetic design

(01)(02)

(03)(04)

√√

(35)(06)

(07)(08)

Inappropriate quality of images

(01)(02)

(03)(04)

√√

(15)(06)

(07)(08)

25

Missing alternative texts

(01)(02)

(03)(04)

√√

(45)(06)

(07)(08)

Broken images

(01)(02)

(03)(04)

√√

(105)(06)

(07)(08)

Inappropriate choice of fonts and colours

(01)(12)

(03)(04)

√√

(45)(16)

(07)(08)

Inappropriate page titles

(01)(02)

(03)(04)

√√

(35)(06)

(07)(08)

Purchasing Process Problems

Difficulty in knowing what was required for some fields

√√

(11)(12)

(03)(04)

(05)(16)

(07)(08)

Difficulty in distinguishing between required and non- required fields

(01)(02)

√√

(33)(04)

(05)(06)

(07)(08)

Difficulty in knowing what links needed to be clicked

(01)(02)

√√

(33)(04)

(05)(06)

(07)(08)

Long ordering process √√

(01)(12)

(03)(04)

√√

(05)(16)

(07)(08)

Session problem

(01)(02)

√√

(03)(14)

(05)(06)

√√

(07)(18)

Not easy to log on to the site

(01)(02)

(03)(04)

(05)(06)

√√

(17)(08)

Lack of confirmation if users deleted an item from their shopping cart

(01)(02)

(03)(04)

(05)(06)

√√

(37)(08)

Long registration page

(01)(02)

(03)(04)

(05)(06)

√√

(17)(08)

Compulsory registration

(01)(02)

(03)(04)

(05)(06)

√√

(27)(08)

Illogical required fields √√

(01)(22)

(03)(04)

√√

(05)(26)

(07)(08)

Expected information not displayed after adding products to cart

√√

(11)(02)

√√

(13)(04)

(05)(06)

(07)(08)

Security and Privacy Problems

Lack of confidence in security and privacy

(01)(02)

(03)(04)

(05)(06)

√√

(17)(08)

Accessibility and Customer Service Problems

Not easy to find help/customer support information

(01)(02)

√√

(33)(04)

√√

(15)(06)

(07)(08)

Not supporting more than one language

√√

(01)(22)

(03)(04)

√√

(05)(26)

(07)(08)

Not supporting more than one currency

(01)(02)

(03)(04)

√√

(25)(06)

(07)(08)

Inappropriate information provided within a help section/customer service

(01)(12)

(03)(04)

√√

(15)(16)

(07)(08)

Not supporting the sending of comments from customers

(01)(02)

(03)(04)

√√

(25)(06)

(07)(08)

26

Not easy to find and access the site from search engines

(01)(02)

(03)(04)

√√

(25)(06)

(07)(08)

Inconsistency Problems

Inconsistent page layout or style/colours/ terminology/content

(01)(12)

(03)(04)

√√

(215)(16)

(07)(08)

Missing capabilities Missing functions/information √

(01)(12)

(03)(04)

√√

(195)(16)

(07)(08)

√√: Good identification of the specific problem area √: Missed identification of some of the specific problem areas Blank: Could not identify the specific problem area

1: Number of minor usability problems uniquely identified by the user testing method

2: Number of minor usability problems commonly identified by the user testing and heuristic evaluation methods

3: Number of major usability problems uniquely identified by the user testing method

4: Number of major usability problems commonly identified by the user testing and heuristic evaluation methods

5: Number of minor usability problems uniquely identified by the heuristic evaluation method

6: Number of minor usability problems commonly identified by the user testing and heuristic evaluation methods

7: Number of major usability problems uniquely identified by the heuristic evaluation method

8: Number of major usability problems commonly identified by the user testing and heuristic evaluation methods

View publication statsView publication stats

  • E-Commerce Websites for Developing Countries – A Usability Evaluation Framework
  • The remaining sections of this paper describe the methods used, present the main results, illustrate the framework and finally, present the conclusions.
  • 2. Methodology
  • 2.1 Selection of usability evaluation methodologies
  • 2.2 Case studies
  • Table 1: Trial matrix of web metrics
  • 3. Results
  • 3.1 Google Analytics results
  • 3.2 User testing and heuristic evaluation methods
  • Table 2: Distribution of usability problems uniquely identified by the two methods
  • 4. An evaluation framework
  • Figure 4: A framework to evaluate the usability of an e-commerce website
  • 5. Conclusion
  • References

Comments are closed.